Effects of gamma-ray radiation on channel current of the uniaxial strained Si nano-scale NMOSFET

نویسندگان

  • Minru Hao
  • Huiyong Hu
  • Chen-Guang Liao
  • Bin Wang
چکیده

An analytical model of channel current for the uniaxial strained Si nanometer NMOSFET has been developed with the degradation due to total dose irradiation taken into consideration. Based on this model, the numerical simulation has been carried out by Matlab, and the influence of the total dose on channel current was simulated. Furthermore, to evaluate the validity of the model, the simulation results were compared with experimental data, and good agreements were confirmed. Thus, the proposed model provides good reference for research on irradiation reliability of uniaxial strained Si nanometer NMOSFET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Characteristics of the Uniaxial-Strained nMOSFET with a Fluorinated HfO2/SiON Gate Stack

The channel fluorine implantation (CFI) process was integrated with the Si₃N₄ contact etch stop layer (SiN CESL) uniaxial-strained n-channel metal-oxide-semiconductor field-effect transistor (nMOSFET) with the hafnium oxide/silicon oxynitride (HfO₂/SiON) gate stack. The SiN CESL process clearly improves basic electrical performance, due to induced uniaxial tensile strain within the channel. How...

متن کامل

Stress immunity enhancement of the SiN uniaxial strained n-channel metal-oxide-semiconductor field-effect-transistor by channel fluorine implantation

Channel fluorine implantation (CFI) has been successfully integrated with silicon nitride contact etch stop layer (SiN CESL) to investigate electrical characteristics and stress reliabilities of the n-channel metal– oxide–semiconductor field-effect-transistor (nMOSFET) with HfO2/SiON gate dielectric. Although fluorine incorporation had been used widely to improve device characteristics, however...

متن کامل

Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET

A novel structure of double-gate (DG) NMOSFET, which is formed by a strained silicon (Si) channel by using Si/Si1−xGex/Si, is proposed for the improvement of device characteristics. For analyzing the nano-scale DG MOSFET, a two-dimensional quantum-mechanical (QM) approach for solving the coupled Poisson-Schrödinger equations is reported. The advantages of a strained Si channel of DG MOSFET are ...

متن کامل

Analytical Model of Surface Potential and Threshold Voltage of Biaxial Strained Silicon Nmosfet including Qme

In this paper physics based analytical model for threshold voltage of nanoscale biaxial strained nMOSFET has been presented. The maximum depletion depth and surface potential in biaxial strained–Si nMOSFET is determined, taking into account both the quantum mechanical effects (QME) and effects of strain in inversion charge sheet. The results show that a significant decrease in threshold voltage...

متن کامل

Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET

In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Electronic Express

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017